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Abstract

We study optimal fiscal policy in a standard incomplete-markets model with unin-
surable idiosyncratic income risk, where a Ramsey planner chooses time-varying paths
of proportional capital and labor income taxes, lump-sum transfers (or taxes), and
government debt. We find that: (1) short-run capital income taxes are effective in
providing redistribution since the tax base is relatively unequal and inelastic; (2) an
increasing pattern of labor income taxes over time mitigates intertemporal distortions
from capital income taxes; (3) the optimal policy increases overall transfers, calibrated
initially to the US welfare system, by roughly 50 percent; (4) two-thirds of the welfare
gains come from redistribution and the remaining third come mostly from insurance;
and (5) redistribution also leads to a more efficient allocation of labor via wealth effects
on labor supply—lower productivity households can afford to work relatively less.
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1 Introduction
How and to what extent should fiscal policy be used to mitigate household inequality and risk?
We provide a quantitative answer to these questions by studying a Ramsey problem in the
standard incomplete-markets (SIM) model, a general equilibrium model with heterogeneous
agents and uninsurable idiosyncratic labor income risk.1

We begin with a detailed calibration of the SIM model that replicates several aspects of
the US economy, including the cross-sectional distribution of wealth, earnings, hours worked,
consumption, and total income, as well as statistical properties of the labor income process of
households. We then consider a Ramsey planner that finances an exogenous stream of gov-
ernment expenditures with proportional capital and labor income taxes, lump-sum transfers
(or taxes), and government debt. We allow policy to be time varying and evaluate welfare
over the transition. To solve for the optimal paths of fiscal instruments, we parameterize
them in the time domain using flexible polynomials, then maximize welfare using a global
optimization algorithm.

We find that a utilitarian planner would confiscate capital income for the initial 16 years,
and still tax it at a positive rate of 27 percent in the long run, lower than the prevailing
rates in the US of 42 percent. Labor income taxes increase over time in the 16 initial years
reaching 39 percent in the long run, a significantly higher level than the prevailing rate of 23
percent. These changes in income taxes are used to finance an increase in lump-sum transfers
of roughly 50 percent on average over time. At the same time, the ratio of government debt
to GDP more than doubles to 154 percent in the long run. This policy leads to welfare gains
equivalent to a permanent increase in consumption of 3.5 percent.

More generally, we provide new insights about the dynamics of the optimal policy in the
SIM model. The initial confiscation of capital income, rebated via lump-sum transfers, is
effective in providing redistribution, since the tax base is relatively unequal and inelastic.
The resulting distortions to the intertemporal margin are mitigated by an increasing path of
labor income taxes this period and, in a subtle way, by a non-monotonic path of lump-sum
transfers. The achieved redistribution also activates a wealth effect on labor supply that
leads to a more efficient allocation of labor, increasing the correlation between productivity
and hours worked. The overall more generous tax-transfer system also provides insurance
to the income risk faced by households. These qualitative features of the optimal policy are
robust to significant changes to the calibration of the model.

To disentangle the main forces that determine the optimal policy, we develop a procedure
1Originally developed by Bewley (1986), Imrohoruglu (1989), Huggett (1993), and Aiyagari (1994).
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to decompose welfare gains. The average welfare gains of 3.5 percent can be decomposed
into: (i) 0.2 percent from a reduction in distortions to households’ decisions, (ii) 1.2 percent
from insurance (the reduction of ex-post risk), and (iii) 2.1 percent from redistribution (the
reduction of ex-ante risk). This decomposition is particularly useful when considering policy
variations since it allows us to measure the effects on each of these components separately.

These components of welfare must be considered on balance in the design of the optimal
policy. Capital and labor income are both unequally distributed between households and
risky over time. Labor and capital income taxes distort households’ savings and labor supply
decisions, but rebating their revenue via lump-sum transfers effectively provides redistribution
and insurance. We formalize and quantify this trade-off by: (1) analytically characterizing
the optimal policy in a two-period version of the SIM model; (2) considering perturbations
to the optimal policy and quantifying their implications for distortions, inequality, and risk;
and (3) measuring the effect of varying the intertemporal elasticity of substitution and Frisch
elasticity on optimal taxes.

To investigate further the determinants of the optimal policy, we also consider a Ramsey
planner that disregards equality concerns and focuses only on efficiency (i.e., a planner that
minimizes distortions—or maximizes the welfare of the average household—and minimizes
risk faced by households given their initial conditions). The optimal policy in this case is
remarkably similar to the benchmark utilitarian one. This is particularly surprising since
redistribution accounts for the largest share of the welfare gains in the benchmark results.
The reason for this is that redistribution is actually complementary to efficiency. Transferring
resources from rich/productive households to poor/unproductive ones leads, through wealth
effects on labor supply, to a relative increase in hours worked by the more productive. The
end result is a substantial increase in average labor productivity. This effect is strong enough
that it is optimal to provide a considerable amount of redistribution even if the sole purpose
is to maximize efficiency. We should emphasize that the complementary between efficiency
and redistribution hinges on the strength of wealth effects on labor supply and disappears
when these are set to zero (as implied by GHH preferences), so we are careful to discipline
these wealth effects well by matching at the same time the distributions of earnings, wealth,
and hours worked.

We also show that the time variation of fiscal instruments is important. If they are re-
stricted to being constant over time, the welfare gains are roughly half of the ones implied
by the optimal policy, in large part because the movements over time allow the cross mitiga-
tion of distortions. Time variation is also crucial if one is interested in determining long-run
optimal tax levels and other properties of the long-run Ramsey allocation.
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To illustrate the role of market incompleteness and highlight why and how our results
differ from the existing complete-markets Ramsey literature, we consider complete-markets
versions of our model in which we can analytically characterize the optimal fiscal policy. In a
representative-agent economy without any heterogeneity, it is optimal to obtain all necessary
revenue via lump-sum taxes. Heterogeneity in labor productivity rationalizes distortive labor
income taxes for redistributive purposes. Similarly, asset heterogeneity leads to high initial
capital income taxes that go to zero after a finite number of periods; in the short run with high
capital income taxes, labor income taxes are increasing over time to mitigate intertemporal
distortions. If both types of heterogeneity are present, the over-time pattern of optimal
capital and labor income taxes is qualitatively and quantitatively similar to those from the
SIM model with the notable exception that long-run capital income taxes are positive in the
SIM model. Hence, long-run capital income taxes in the SIM model are used to provide
insurance for the privately uninsurable risk that is present when markets are incomplete.

In the complete-markets model, the timing of lump-sum transfers and the corresponding
path of government debt is indeterminate since the Ricardian equivalence holds. In the SIM
model, this is not the case. Nevertheless, we find that the optimal time variation of lump-
sum transfers and debt contribute only marginally to the overall welfare gains. Specifically,
reoptimizing subject to the constraint that lump-sum transfers be constant over time, or
that the debt-to-output must be fixed at its pre-reform level, leads to welfare losses of about
0.1 and 0.2 percent respectively. There are three reasons for this: (1) departures from
Ricardian equivalence are quantitatively relevant in proportion to how close households are
to their borrowing constraints; (2) under the optimal policy only a minority of households are
borrowing constrained; and (3) the general equilibrium price effects associated with changes
in debt have counteracting effects on redistribution and insurance.

Related Literature

Aiyagari (1995) provides a rationale for positive long-run capital income taxes in the SIM
model: these taxes implement the modified golden rule by attenuating households precaution-
ary savings.2 We quantify, in particular, the specific value for the optimal long-run capital
income taxes. Acikgoz (2015) and, more recently, Acikgoz, Hagedorn, Holter, and Wang
(2018) obtained additional long-run optimality conditions. Moreover, Acikgoz et al. (2018)
show that long-run fiscal policy can be characterized independently of initial conditions and
2Chamley (2001) provides a complementary rationale, transferring from the rich to the poor in the long-run
is Pareto improving since, far enough in the future, everyone has the same probability of being in either
condition. Chen, Yang, and Chien (2020) argue that the existence of the Ramsey steady state, assumed by
Aiyagari (1995), depends on the value of intertemporal elasticity of substitution.
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solve backwards for the optimal transition. We offer an alternative method of solving for the
optimal policies in the SIM model, which does not require establishing independence of the
long-run policies from transitional dynamics and which can be applied to any model in which
one can compute transitions fast enough, even if first-order conditions are not tractable.3

Gottardi, Kajii, and Nakajima (2015) and Heathcote, Storesletten, and Violante (2017) an-
alytically characterize the optimal fiscal policy in stylized versions of the SIM model. Krueger
and Ludwig (2018) do the same in an overlapping generations setup. Their approaches lead
to elegant and insightful closed-form solutions. We take a more quantitative approach which
allows us to match some aspects of the data, in particular measures of inequality and risk,
which we find to be important for the determination of the optimal tax system.

There is a limited but growing literature on Ramsey problems in quantitative frameworks
with heterogeneity. Itskhoki and Moll (2019) study optimal dynamic development policies in
an incomplete-markets model where heterogeneous producers are subject to financial frictions.
Nuño and Thomas (2016) use a novel continuous-time technique to solve for optimal monetary
policy, including optimal transition, in a version of the SIM model with money. Ragot and
Grand (2020) solve the Ramsey problem in the SIM model with aggregate technology shocks
by truncating the histories of idiosyncratic shocks. Our contribution to this literature is to
develop a technique for solving Ramsey problems which can be applied to a wide range of
models including a realistically calibrated SIM model. Also, our welfare decomposition offers
a clean way of breaking down welfare gains in non-stationary environments with heterogeneity
and risk.

There is a larger literature analyzing optimal policy in the steady state—for instance,
Conesa, Kitao, and Krueger (2009)—or optimal constant policy including transitional effects—
Bakis, Kaymak, and Poschke (2015), Krueger and Ludwig (2016), and Boar and Midrigan
(2020). To our knowledge, Domeij and Heathcote (2004) were the first to quantify the im-
portance of accounting for transitional effects of fiscal policy in the SIM model, showing that
the short-run distributional losses that result from reducing capital income taxes dominate
the long-run gains.4 We show that, in our framework, it is important to not only account for
transitional effects but also to allow policy instruments to change over time.

This paper is also related to the emerging literature on universal basic income—Guner,
3We also extend the results from Acikgoz et al. (2018) to obtain long-run optimality conditions for the
balanced-growth-path preferences we use and show that our results do satisfy these conditions. We find this
to be reassuring about the accuracy of both methods. We discuss the relationship between our method and
results and theirs in Section 5.6 and, in more detail, in Appendix M.

4Huggett (1997) developed an algorithm to compute transition in the SIM model, and Conesa and Krueger
(1999) account for transitional effects of social-security policies in an overlapping-generations version o the
SIM model.
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Kaygusuz, and Ventura (2021), Luduvice (2019) and Daruich and Fernández (2020). Our
measurement of lump-sum transfers covers all sources of transfers provided by the federal
government which imply a lower bound to income. The overall increase in lump-sum transfers
suggested by the Ramsey policy could be implemented by the introduction of an universal
basic income.

We also contribute to the literature on the interaction between government-debt policy and
market incompleteness. In an influential paper, Aiyagari and McGrattan (1998) show that
current levels of debt-to-output are close to the level that maximizes steady-state welfare.
Röhrs and Winter (2017) show that calibrating the model to match inequality measures leads
to high levels of government assets being optimal.5 We target cross-sectional statistics and
properties of the labor income process, and compute optimal government debt not only in
the long run but also in transition. We then quantify the importance of time-varying debt
under optimal policy in the SIM model.

Finally, there is an extensive literature on Ramsey problems in complete-markets economies.
The most well-known result, due to Judd (1985) and Chamley (1986), that capital income
taxes should converge to zero in the long run6 has been refined by Straub and Werning (2020),
but it remains true in the complete-markets version of our model since we allow for lump-sum
taxes.7 Werning (2007) characterizes optimal policy for this class of economies allowing for
complete expropriation of initial capital holdings. We extend that characterization to impose
an upper bound on capital income taxes and obtain complete-markets results that are com-
parable to our benchmark results. Following a numerical approach similar to ours, Conesa
and Garriga (2008) use flexible time-dependent instruments to study social security reform.
Bassetto (2014), Saez and Stantcheva (2018), and Greulich, Laczó, and Marcet (2019) also
study optimal fiscal policy with heterogeneous households focusing on different dimensions.

2 Mechanism: Two-Period Economy
In this section, we consider a general-equilibrium two-period economy to explore how exoge-
nous changes to risk and inequality affect the optimal tax system. We show that the presence
of uninsurable labor-productivity risk creates a reason to use distortive labor income taxes
5Bhandari, Evans, Golosov, and Sargent (2017) investigate the role of government debt in an incomplete
markets economy with fixed heterogeneity and aggregate risk. They highlight that having some households
borrowing constrained can be beneficial since it magnifies price effects of changes in government debt. This
mechanism plays a role in some of our results.

6Among others, Jones, Manuelli, and Rossi (1997), Atkeson, Chari, and Kehoe (1999) and Chari, Nicolini,
and Teles (2018) show this result is robust to a relaxation of a number of assumptions.

7We discuss this in detail in Appendix F.8.
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even if the planner is able to obtain all necessary revenue using the undistortive lump-sum
instrument. Similarly, we show that more inequality leads to higher optimal levels of capital
income taxes. These takeaways are useful to interpret the results in the more complicated
quantitative model that follows.

2.1 The effect of risk

Consider an economy with a measure one of ex-ante identical households who live for two
periods. Suppose the period utility function is given by

𝑢(𝑐, ℎ) = (𝑐𝛾(1 − ℎ)1−𝛾)1−𝜎

1 − 𝜎 , (2.1)

where 𝑐 and ℎ are the levels of consumption and labor, 𝛾 controls the consumption share, and
𝜎 controls the preference for risk and over-time smoothness. Also, suppose that households
discount the future by a factor of 𝛽.

In period 1, each household receives an endowment of 𝜔 consumption goods, which can
be invested into a risk-free asset 𝑎, and supplies ℎ̄ units of labor inelastically. In period 2,
households receive income from the asset they saved in period 1 and from labor. Labor is
supplied endogenously in period 2. The productivity of the labor is random and can take two
values: 𝑒𝐿 with probability 𝜋𝐿, and 𝑒𝐻 > 𝑒𝐿 with probability 𝜋𝐻, with the mean productivity
normalized to 1. These productivity shocks are independent across consumers, and a law of
large numbers applies so that the fraction of households with each productivity level equals
their probability.

In period 2, output is produced using capital, 𝐾, and labor, 𝑁 , and a constant-returns-to-
scale neoclassical production function 𝐹(𝐾, 𝑁) which includes undepreciated capital. The
government needs to finance an expenditure of 𝐺. It has three instruments available: labor
income taxes, 𝜏ℎ, capital taxes, 𝜏𝑘

𝑅,8 and lump-sum transfers 𝑇 (which can be positive or
negative). Let 𝑤 be the wage rate and 𝑅 the gross interest rate.

Definition 1 A tax-distorted competitive equilibrium is (𝐾, ℎ𝐿, ℎ𝐻, 𝑤, 𝑅, 𝜏ℎ, 𝜏𝑘
𝑅, 𝑇 ) such that

1. (𝐾, ℎ𝐿, ℎ𝐻) solves

max
𝑎,ℎ𝐿,ℎ𝐻

𝑢(𝜔 − 𝑎, ℎ̄) + 𝛽𝐸[𝑢(𝑐𝑖, ℎ𝑖)], s.t. 𝑐𝑖 = (1 − 𝜏ℎ)𝑤𝑒𝑖ℎ𝑖 + (1 − 𝜏𝑘
𝑅)𝑅𝑎 + 𝑇 ;

2. 𝑅 = 𝐹𝐾(𝐾, 𝑁), 𝑤 = 𝐹𝑁(𝐾, 𝑁), where 𝑁 = 𝜋𝐿𝑒𝐿ℎ𝐿 + 𝜋𝐻𝑒𝐻ℎ𝐻;
8Below we denote capital income taxes by 𝜏𝑘, but here it is more convenient to use 𝜏𝑘

𝑅.
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3. and, 𝜏ℎ𝑤𝑁 + 𝜏𝑘
𝑅𝑅𝐾 = 𝐺 + 𝑇 .

The Ramsey problem is to choose 𝜏ℎ, 𝜏𝑘
𝑅, and 𝑇 to maximize welfare in equilibrium.

Since households are ex-ante identical there is no ambiguity about which welfare function
to use. If there is no risk, i.e. 𝑒𝐿 = 𝑒𝐻, the households are also ex-post identical and the
usual representative-agent result applies: since lump-sum taxes are available, it is optimal to
obtain all revenue via this non-distortive instrument and set 𝜏ℎ = 𝜏𝑘

𝑅 = 0. When there is
risk, this is no longer the case:9

Proposition 1 The optimal tax system is such that

𝜏ℎ = Ω
1 − 𝑁 + 𝛾Ω, and 𝜏𝑘

𝑅 = (1 − 𝛾)𝜏ℎ

1 − 𝛾𝜏ℎ ,

where
Ω ≡ 𝜋𝐿(1 − 𝑒𝐿)𝑢𝑐,𝐿 + 𝜋𝐻(1 − 𝑒𝐻)𝑢𝑐,𝐻

𝜋𝐿𝑢𝑐,𝐿 + 𝜋𝐻𝑢𝑐,𝐻
≥ 0.

Further, Ω = 0 if 𝑒𝐿 = 𝑒𝐻, and for an increase in risk via a mean-preserving spread 𝜀, such
that productivities become (𝑒𝐿 − 𝜀/𝜋𝐿, 𝑒𝐻 − 𝜀/𝜋𝐻), we have that 𝜕Ω(𝜀)/𝜕𝜀 > 0.

The proofs of the results in this section can be found in Appendix B.10 Notice that Ω,
which is an endogenous object, can be interpreted as a measure of the planner’s distaste for
risk: it is zero if there is no risk and increases when risk is increased via a mean-preserving
spread. Thus, it follows from the formula for 𝜏ℎ that labor income taxes are increasing in the
amount of risk faced by households. This effectively provides insurance to households since
it reduces the proportion of total household income that is risky.11 The optimal tax system,
then, balances this provision of insurance with the reduction of distortions. Capital taxes
do not affect the risk faced by households, but do allow the planner to mitigate some of the
distortion caused by labor taxes via wealth effects: taxing capital reduces wealth in period 2
which increases labor supply.12

9In a similar two-period environment, Gottardi et al. (2016) establish some properties of the solution to the
Ramsey problem for general utility functions. They do, however, impose assumptions about the sign of
general equilibrium effects, which are satisfied for the utility function considered here.

10Appendix B also discusses the case with both risk and inequality and connections with the results of Dávila
et al. (2012) who study the related issue of constrained inefficiency in this environment.

11This mechanism is reminiscent of Barsky et al. (1986).
12When there are no wealth effects on labor supply, a case considered in an earlier version of this paper,

Dyrda and Pedroni (2016), optimal capital income taxes are set to zero.
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2.2 The effect of inequality

Consider the environment described above replacing productivity risk with initial wealth
inequality. That is, suppose that 𝑒𝐿 = 𝑒𝐻 = 1, and that the initial endowment can take two
values: 𝜔𝐿 for a proportion 𝑝𝐿 of households, and 𝜔𝐻 > 𝜔𝐿 for the rest. Let 𝜔̄ denote the
average endowment. In this economy, the concept of optimality is no longer unambiguous.
For the utilitarian welfare function we can show that:

Proposition 2 If 𝜎 = 1,13 then the utilitarian optimal tax system is such that

𝜏𝑘
𝑅 = 𝛾 + 𝛽

𝛽
Λ

𝜔̄ − 𝐾 + Λ, and 𝜏ℎ = 0,

where
Λ ≡ 𝑝𝐿(𝐾 − 𝑎𝐿)𝑢𝑐,𝐿 + 𝑝𝐻(𝐾 − 𝑎𝐻)𝑢𝑐,𝐻

𝑝𝐿𝑢𝑐,𝐿 + 𝑝𝐻𝑢𝑐,𝐻
≥ 0.

Further, Λ = 0 if 𝜔𝐿 = 𝜔𝐻, and for an increase in inequality via a mean-preserving spread 𝜀,
such that the initial endowments become (𝜔𝐿 −𝜀/𝑝𝐿, 𝜔𝐻 −𝜀/𝑝𝐻), we have that 𝜕Λ(𝜀)/𝜕𝜀 > 0.

Here, Λ, which is also endogenous, can be interpreted as a measure of the planner’s distaste
for inequality. The planner chooses a positive capital income tax which distorts savings
decisions but allows for redistribution between households. The ex-ante wealth inequality
is exogenously given. However, households with different wealth levels in period 1 save
different amounts and have different asset levels in period 2. This endogenously generated
asset inequality is the one the tax system is able to affect. A positive capital income tax,
rebated via lump-sum transfers, directly reduces the proportion of household income that
depends on unequal asset income achieving the desired redistribution.

Optimal labor income taxes are set to zero. To see why, consider increasing labor taxation
and rebating the extra revenue via a lump-sum. Since asset-poorer households have a higher
proportion of their income coming from labor, this change would have a negative redistribu-
tive effect. On the other hand, this would lead to higher savings for poor household which
actually mitigates the distortion to their savings decisions. These effects exactly cancel each
other.

The two-period example is useful for understanding some of the key trade-offs faced by
the Ramsey planner, since it allows the levels of risk and inequality to be set exogenously.
13In the proof of this proposition, we obtain a more general result that applies for any 𝜎. We impose this

condition here to simplify the exposition, otherwise the formula for 𝜏𝑘
𝑅 would be more cumbersome, though

it remains optimal to set 𝜏ℎ = 0.
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In the infinite horizon version of the SIM model, however, risk and inequality are inevitably
intertwined. The characterization of the optimal tax system therefore becomes considerably
more complex. Labor income taxes affect not only the level of risk through the mechanism
described above, but also labor income inequality and the distribution of assets over time.
The asset level of a household in a particular period depends on the history of shocks the
household has experienced. Therefore, capital income taxation affects both ex-ante and ex-
post risk faced by households. Nevertheless, these results are useful for understanding some
features of the optimal fiscal policy in the infinite horizon model, as will become clear in what
follows.

3 The Infinite-Horizon Model
In this model, time is discrete and infinite, indexed by 𝑡. There is a continuum of house-
holds with standard preferences 𝔼0 [∑𝑡 𝛽𝑡𝑢 (𝑐𝑡, ℎ𝑡)] where 𝑐𝑡 and ℎ𝑡 denote consumption
and hours worked in period 𝑡. The household’s labor productivity, denoted by 𝑒 ∈ 𝐸 with
𝐸 ≡ {𝑒1, … , 𝑒𝐿}, follows a Markov process governed by the transition matrix Γ. Households
can only accumulate a risk-free asset, 𝑎. Let the set of possible values for 𝑎 be 𝐴 ≡ [𝑎, ∞),
and let 𝑆 ≡ 𝐸 × 𝐴, households are then indexed by the pair (𝑒, 𝑎) ∈ 𝑆. Given a sequence of
prices {𝑟𝑡, 𝑤𝑡}∞

𝑡=0, labor income taxes {𝜏ℎ
𝑡 }∞

𝑡=0, capital income taxes {𝜏𝑘
𝑡 }∞

𝑡=0, and lump-sum
transfers {𝑇𝑡}∞

𝑡=0, each household at time 𝑡 chooses 𝑐𝑡 (𝑎, 𝑒), ℎ𝑡 (𝑎, 𝑒), and 𝑎𝑡+1 (𝑎, 𝑒) to solve

𝑣𝑡(𝑎, 𝑒) = max
𝑐𝑡,ℎ𝑡,𝑎𝑡+1

𝑢(𝑐𝑡(𝑎, 𝑒), ℎ𝑡(𝑎, 𝑒)) + 𝛽 ∑
𝑒𝑡+1∈𝐸

𝑣𝑡+1(𝑎𝑡+1(𝑎, 𝑒), 𝑒𝑡+1)Γ𝑒,𝑒𝑡+1

subject to

(1 + 𝜏𝑐)𝑐𝑡(𝑎, 𝑒) + 𝑎𝑡+1(𝑎, 𝑒) = (1 − 𝜏ℎ
𝑡 ) 𝑤𝑡𝑒ℎ𝑡(𝑎, 𝑒) + (1 + (1 − 𝜏𝑘

𝑡 )𝑟𝑡)𝑎 + 𝑇𝑡

𝑎𝑡+1(𝑎, 𝑒) ≥ 𝑎.

Note that both the value and the policy functions are indexed by time, because policies
{𝜏𝑘

𝑡 , 𝜏ℎ
𝑡 , 𝑇𝑡}∞

𝑡=0 and aggregate prices {𝑟𝑡, 𝑤𝑡}
∞
𝑡=0 are time-varying. The consumption tax, 𝜏𝑐,

is a parameter.14 Let {𝜆𝑡}
∞
𝑡=0 be a sequence of probability measures over the Borel sets 𝒮 of

14It is not without loss of generality that we do not allow the planner to choose 𝜏𝑐. There are two reasons
for this choice. The first is practical: we are already using the limit of the computational power available
to us, and allowing for one more choice variable would increase it substantially. Second, in the US, capital
and labor income taxes are chosen by the federal government while consumption taxes are chosen by the
states, so this Ramsey problem can be understood as the one relevant for the federal government. We add
𝜏𝑐 as a parameter for calibration purposes.
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𝑆 with 𝜆0 given. Since the path for taxes is known, prices and{𝜆𝑡}
∞
𝑡=0 follow deterministic

paths. As a result, we do not need to keep track of the distribution as an additional state;
time is a sufficient statistic.

Competitive firms own a constant-returns-to-scale technology 𝑓(⋅) that uses capital, 𝐾𝑡,
and efficient units of labor, 𝑁𝑡, to produce output each period: 𝑓(⋅) denotes output net
of depreciation, while 𝛿 is the depreciation rate. A representative firm exists that solves
the usual static problem. The government needs to finance an exogenous constant stream
of expenditure, 𝐺, and lump-sum transfers with taxes on consumption, labor income, and
capital income. The government can also issue debt, {𝐵𝑡+1}∞

𝑡=0, subject to the constraint
that the sequence is bounded. The government’s intertemporal budget constraint is given by

𝐺 + 𝑟𝑡𝐵𝑡 = 𝐵𝑡+1 − 𝐵𝑡 + 𝜏𝑐𝐶𝑡 + 𝜏ℎ
𝑡 𝑤𝑡𝑁𝑡 + 𝜏𝑘

𝑡 𝑟𝑡(𝐾𝑡 + 𝐵𝑡) − 𝑇𝑡, (3.1)

where 𝐶𝑡 denotes aggregate consumption.

Definition 2 Given 𝐾0, 𝐵0, an initial distribution 𝜆0, and a policy 𝜋 ≡ {𝜏𝑘
𝑡 , 𝜏ℎ

𝑡 , 𝑇𝑡}∞
𝑡=0,

a competitive equilibrium is a sequence of value functions {𝑣𝑡}∞
𝑡=0, an allocation 𝑋 ≡

{𝑐𝑡, ℎ𝑡, 𝑎𝑡+1, 𝐾𝑡+1, 𝑁𝑡, 𝐵𝑡+1}∞
𝑡=0, a price system 𝑃 ≡ {𝑟𝑡, 𝑤𝑡}∞

𝑡=0, and a sequence of distri-
butions {𝜆𝑡}∞

𝑡=1, such that for all 𝑡:

1. Given 𝑃 and 𝜋, 𝑐𝑡(𝑎, 𝑒), ℎ𝑡(𝑎, 𝑒), and 𝑎𝑡+1(𝑎, 𝑒) solve the household’s problem and
𝑣𝑡(𝑎, 𝑒) is the respective value function;

2. Factor prices are set competitively,

𝑟𝑡 = 𝑓𝐾(𝐾𝑡, 𝑁𝑡), 𝑤𝑡 = 𝑓𝑁(𝐾𝑡, 𝑁𝑡);

3. The sequence of probability measures {𝜆𝑡}∞
𝑡=1 satisfies

𝜆𝑡+1(𝒮) = ∫
𝐴×𝐸

𝑄𝑡 ((𝑎, 𝑒), 𝒮) 𝑑𝜆𝑡, ∀𝒮 in the Borel 𝜎-algebra of 𝑆,

where 𝑄𝑡 is the transition probability measure;

4. The government budget constraint, (3.1), holds and debt is bounded;15

15We do not impose any exogenous upper bound on the path of government debt. By “debt is bounded” we
mean that there exists 𝑀 such that |𝐵𝑡| < 𝑀 for every 𝑡 ≥ 1, but we do not specify any 𝑀.
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5. Markets clear,

𝐶𝑡 + 𝐺𝑡 + 𝐾𝑡+1 − 𝐾𝑡 = 𝑓(𝐾𝑡, 𝑁𝑡), 𝑁𝑡 = ∫
𝐴×𝐸

𝑒ℎ𝑡(𝑎, 𝑒)𝑑𝜆𝑡, 𝑎𝑛𝑑 𝐾𝑡 + 𝐵𝑡 = ∫
𝐴×𝐸

𝑎 𝑑𝜆𝑡.

3.1 The Ramsey problem

We assume that, in period 0, the government announces and commits to a sequence of taxes
and transfers {𝜏𝑘

𝑡 , 𝜏ℎ
𝑡 , 𝑇𝑡}∞

𝑡=0.

Definition 3 Given 𝐾0, 𝐵0, and 𝜆0, for every policy 𝜋, equilibrium allocation rules
𝑋(𝜋) and equilibrium price rules 𝑃(𝜋) are such that {𝜋, 𝑋(𝜋), 𝑃 (𝜋)} together with the
corresponding {𝑣𝑡}∞

𝑡=0 and {𝜆𝑡}∞
𝑡=1 constitute a competitive equilibrium. Given a welfare

function 𝑊(𝜋), the Ramsey problem is to max𝜋∈Π 𝑊(𝜋) subject to 𝑋(𝜋) and 𝑃(𝜋) being
equilibrium allocation and price rules, and Π is the set of policies 𝜋 = {𝜏𝑘

𝑡 , 𝜏ℎ
𝑡 , 𝑇𝑡}∞

𝑡=0 for
which an equilibrium exists.

In our benchmark experiments, we assume that the Ramsey planner maximizes the utili-
tarian welfare function: the ex-ante expected lifetime utility of a “newborn” household who
has its initial state, (𝑎0, 𝑒0), chosen at random from the initial stationary distribution 𝜆0.
The planner’s objective is, thus, given by

𝑊(𝜋) = ∫
𝑆

𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑡 (𝑎0, 𝑒0|𝜋) , ℎ𝑡 (𝑎0, 𝑒0|𝜋))] 𝑑𝜆0.

We consider alternative welfare functions in Sections 6 and 9.

3.2 Solution method

Solving the Ramsey problem as stated would involve searching in the space of infinite se-
quences of fiscal instruments. To convert the problem into a finite dimensional one we assume
the existence of a Ramsey steady state—in the long run, all optimal fiscal instruments, in-
cluding government debt, become constant and the economy settles in a final stationary
equilibrium.16 To decrease the dimensionality of the problem further, we build on Judd
16By stationary equilibrium we mean that all objects in Definition 2 become time-invariant. We should note

that while the assumption of the existence of a Ramsey steady state is common in the literature it may not
be innocuous as exemplified by Straub and Werning (2020). The specific issue highlighted by Straub and
Werning (2020), however, is not a problem in our setup as a result of lump-sum transfers being available
to the planner, see Appendix F.8 for more details.
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(2002) and parameterize the time paths of fiscal instruments as follows:

𝑥𝑡 = (
𝑚𝑥0

∑
𝑖=0

𝛼𝑥
𝑖 𝑃𝑖(𝑡)) exp (−𝜆𝑥𝑡) + (1 − exp (−𝜆𝑥𝑡)) (

𝑚𝑥𝐹

∑
𝑗=0

𝛽𝑥
𝑗 𝑃𝑗(𝑡)) , 𝑡 ≤ 𝑡𝐹 , (3.2)

where 𝑥𝑡 can be any of the fiscal instruments 𝜏𝑘
𝑡 , 𝜏ℎ

𝑡 , or 𝑇𝑡; {𝑃𝑖(𝑡)}
𝑚𝑥0
𝑖=0 and {𝑃𝑗(𝑡)}

𝑚𝑥𝐹

𝑗=0 are
families of Chebyshev polynomials; {𝛼𝑥

𝑖 }𝑚𝑥0
𝑖=0 and {𝛽𝑥

𝑗 }𝑚𝑥𝐹

𝑗=0 are weights on the consecutive
elements of the family; 𝜆𝑥 controls the convergence rate of the fiscal instrument; and 𝑡𝐹
is the period after which the instrument becomes constant. The orders of the polynomial
approximations are given by 𝑚𝑥0 and 𝑚𝑥𝐹 for the short-run and long-run dynamics. Given
the calibrated initial stationary equilibrium, for any policy with instruments satisfying equa-
tion (3.2) we can compute the transition to the corresponding final stationary equilibrium,
and evaluate welfare. We, then, pick the parameters that determine the policy to maximize
welfare.

To implement this method we need to choose the orders of the Chebyshev polynomials.
Generally, the larger they are the better the approximation is. In practice, however, as
pointed out by Judd (2002), researchers should be interested in the smallest order that yields
an acceptable approximation. Accordingly, we start with small orders and increase them for
each instrument until the welfare gains from additional orders and changes in the instruments
themselves are negligible. In our baseline experiment, we arrive at initial polynomial families
of degree two for labor and capital income taxes (𝑚𝜏𝑘0 = 𝑚𝜏ℎ0 = 2), and four for lump-sum
transfers (𝑚𝑇 0 = 4), and final polynomial families of degree zero for labor and capital income
tax (𝑚𝜏𝑘𝐹 = 𝑚𝜏ℎ𝐹 = 0) and two for lump-sum transfers (𝑚𝑇 𝐹 = 2).17 We set the terminal
period at which taxes become constant to be 𝑡𝐹 = 100,18 and an upper bound on the capital
income taxes of ̄𝜏𝑘 = 1, following the Ramsey literature.19 Given these choices, we end up
with the following 17 parameters:

𝜋𝐴 = {𝛼𝑘
0, 𝛼𝑘

1, 𝛼𝑘
2, 𝛽𝑘

0 , 𝜆𝑘, 𝛼ℎ
0 , 𝛼ℎ

1 , 𝛼ℎ
2 , 𝛽ℎ

0 , 𝜆ℎ, 𝛼𝑇
1 , 𝛼𝑇

2 , 𝛼𝑇
3 , 𝛼𝑇

4 , 𝛽𝑇
0 , 𝛽𝑇

1 , 𝜆𝑇 }, (3.3)

which determine the time paths of fiscal instruments.
17In Appendix G.3 we discuss how the optimal policy changes as we gradually increase the number of choice

variables.
18This is different from the length of the transition, which we set to 250 years so the economy has an

additional 150 years to converge to a new stationary equilibrium. In Appendix G.4, we show that 100
is enough years of tax change. This can also be appreciated from the fact that all fiscal instruments stop
moving well before this limit is reached. We also recomputed the optimal policy increasing the length of
the transition from 250 to 500 and obtained essentially identical results.

19In Appendix O.6 we show how the policy is affected for different choices for ̄𝜏𝑘, whereas in Appendix I we
consider the case without any upper bound.
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To solve problem described above, we design a numerical algorithm for global optimization,
based on insights from Guvenen (2011), Kan and Timmer (1987a), and Kan and Timmer
(1987b). A detailed description is contained in the Appendix D.3, here we present a brief
overview of the procedure. The algorithm is divided into two stages: a global and a local one.
In the global stage we draw from a quasi-random sequence a very large number of policies
in the domain of 𝜋𝐴. We compute transition and evaluate welfare 𝑊(𝜋𝐴) for each of those
policies and select the ones that yield the highest levels of welfare. The selected policies are
then clustered: similar policies are placed in the same cluster. Next, in the local stage we run,
for each cluster, a derivative-free optimizer based on an algorithm designed by Powell (2009).
The sequence of global and local searches is repeated until the number of local minima found
and the expected number of local minima in our problem, determined by a Bayesian rule,
are sufficiently close, or until the bounds on parameters converge. Then, we pick the global
optimum from the set of local optima.20

4 Calibration
A period in the model is considered to be one year. We calibrate the initial stationary
equilibrium of the model to replicate key properties of the US economy relevant for the shape
of the optimal fiscal policy. We use three sets of statistics to discipline model parameters:
(i) time series of macroeconomic data from 1995 to 2007, (ii) cross-sectional, distributional
moments on hours worked, wealth, and earnings, and (iii) panel data on the dynamics of
labor income. Even though it is understood that all model parameters impact all equilibrium
objects, the discussion below associates some parameters to specific empirical targets for
clarity of exposition. In total, we have 38 parameters in the model and we use 44 targets
to discipline them, so the system is overidentified. Parameter values, targeted statistics, and
their model counterparts are presented in Tables 1 and 2. Appendix A contains a detailed
description of how we calculated the targets from the data.

4.1 Households versus individuals

The unit of analysis in the model is a household rather than an individual. Thus, we con-
sistently measure all the relevant statistics in the data at the household level using the
equivalence scales proposed by the US Census. We then interpret consumption, hours, and
asset positions in the household problem (3) in per-capita terms within the household.
20The baseline experiment was conducted using 1200 cores on the Niagara supercomputer at the University

of Toronto, see Ponce et al. (2019) and Appendix D.3 for details about the cluster.
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4.2 Preferences and technology

The discount factor, 𝛽, is chosen to match a capital-output ratio of 2.5.21 The two parameters
in the balanced-growth-path utility function (2.1), 𝛾 and 𝜎 are disciplined with two targets:
(1) an intertemporal elasticity of substitution (IES) of 0.65, which sits between the numbers
used in the related literature of 0.5 in Conesa et al. (2009) and Dávila et al. (2012), 0.8
in Straub and Werning (2020) and 0.86 in Aiyagari and McGrattan (1998), and implies a
relative risk aversion of 1.55;22 and (2) the average hours worked of employed households in
the Current Population Survey (CPS) between 1995 and 2007, which is equal to 0.32.

To discipline the extensive margin labor-supply decision we target the fraction of employed
households in the economy. We follow Heathcote et al. (2010) and consider a household to be
employed if they work more than five hours per week, that is, if ℎ ≥ ℎ ≡ 0.05 = 260/52000.
Using data from the CPS we calculate that 79 percent of households are employed—see
Appendix A.3 for more details. Since household-level Frisch elasticities depend on the house-
hold’s labor supply, we measure the intensive-margin aggregate Frisch elasticity with the
unweighted average of household-level Frisch elasticities for employed households, that is

Ψ ≡ ∫
ℎ(𝑎,𝑒) ≥ ℎ

(𝛾 + (1 − 𝛾) 1
𝜎) 1 − ℎ(𝑎, 𝑒)

ℎ(𝑎, 𝑒) 𝑑𝜆0(𝑎, 𝑒). (4.1)

Our calibration implies a value for Ψ of 0.49 which is close to the 0.54 reported by Chetty
et al. (2011) in their survey of estimates of the Frisch elasticity.23 We conduct sensitivity
analysis with respect to our choice for the IES and this measure of Frisch elasticity in Section
9. The values of preference parameters, together with the implied elasticities are reported in
the first three rows of Table 1, while the targets disciplining them are presented in the first
three rows of Table 2.

The production function, net of depreciation, is given by 𝑓(𝐾, 𝑁) = 𝐾𝛼𝑁1−𝛼 − 𝛿𝐾. The
21Capital is defined as nonresidential and residential private fixed assets and purchases of consumer durables.

For more details, see Appendix A.1.
22Relative to the more conventional IES of 0.5, our choice of 0.65 is also an attempt to absorb, to some

extent, new relevant empirical findings. Recent empirical evidence has generally pointed to higher IES levels
(e.g. Bansal and Yaron (2004), Hansen et al. (2007), Bansal et al. (2012), Barro (2009), and Gruber (2013))
and lower CRRA levels (see Chetty (2006)). In Appendix G.2, we show that we can achieve otherwise very
similar calibration results with an IES of 0.5 or 0.8, and, in Section 9, we conduct a sensitivity analysis
with respect to this choice.

23To check whether the extensive-margin elasticity of labor supply is also in line with the data, we consider the
transitional dynamics following a temporary 1 percent increase in the wage rate and compute the elasticity
of employment with respect to this change. Aggregate hours, 𝐻, can be expressed as 𝐻 = 𝑚 × ℎ, where
𝑚 denotes the employment rate and ℎ mean working hours. It follows that the corresponding elasticities
satisfy 𝜂𝐻 = 𝜂𝑚 + 𝜂ℎ. Our calibration implies that, on impact, 𝜂𝑚 = 0.57 and 𝜂ℎ = 0.45. The
contribution of the extensive margin is in line with the findings in Erosa, Fuster, and Kambourov (2016).
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depreciation rate, 𝛿, is set to match an investment-to-output ratio of 26 percent, and the
capital share, 𝛼, to its empirical counterpart of 0.38.24 These choices imply an interest rate
of 4.7 percent. Finally, to discipline the household borrowing constraint, 𝑎, we target the
fraction of households with negative net worth in the 2007 Survey of Consumer Finances
(SCF), which is 9.7 percent.

Table 1: Benchmark Model Parameters

Description Parameter Value

Preferences and technology

Consumption share 𝛾 0.510 Implied IES ( 1
1−𝛾(1−𝜎)): 0.65

Preference curvature 𝜎 2.069 Implied Frisch (Ψ): 0.49
Discount factor 𝛽 0.954
Capital share 𝛼 0.378∗

Depreciation rate 𝛿 0.104
Borrowing constraint 𝑎 −0.078

Fiscal policy

Capital income tax (%) 𝜏𝑘 41.5∗

Labor income tax (%) 𝜏ℎ 22.5∗

Consumption tax (%) 𝜏𝑐 4.7∗

Government expenditure 𝐺 0.069
Transfers 𝑇 0.088

Labor productivity process

Productivity process curvature 𝜂 1.153
Persistent shock Transitory shock

Γ𝑃 =
⎡
⎢⎢
⎣

0.994 0.002 0.004 3E−5
0.019 0.979 0.001 9E−5
0.023 0.000 0.977 5E−5
0.000 0.000 0.012 0.987

⎤
⎥⎥
⎦

𝑒𝑃 =
⎡
⎢⎢
⎣

0.580
1.153
1.926
27.223

⎤
⎥⎥
⎦

𝑃𝑇 =

⎡
⎢⎢⎢⎢⎢
⎣

0.263
0.003
0.556
0.001
0.001
0.176

⎤
⎥⎥⎥⎥⎥
⎦

𝑒𝑇 =

⎡
⎢⎢⎢⎢⎢
⎣

−0.574
−0.232

0.114
0.133
0.817
1.245

⎤
⎥⎥⎥⎥⎥
⎦

Notes: ∗ denotes exogenously set parameters.

4.3 Fiscal policy

For the tax rates in the initial stationary equilibrium, we use the effective average tax rates
computed by Trabandt and Uhlig (2012) from 1995 to 2007. We set the initial capital income
24These numbers are computed in a consistent way with the capital-output ratio, and Appendix A.1 describes

their calculation in detail.
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tax to 41.5 percent, the labor income tax to 22.5 percent, and the consumption tax to 4.7
percent. We discipline the lump-sum transfer by targeting the average transfer-to-output
ratio in the US from 1995 to 2007, which amounts to 11.4 percent.25 We set government
debt-to-output ratio in the initial equilibrium to be 61.5 percent, averaging out federal debt
over GDP in the data from 1995 to 2007. These choices of fiscal parameters are summarized in
the rows labeled “Fiscal policy” in Table 1 and “Macroeconomic aggregates” in Table 2. The
calibrated values implies a government-expenditure-to-output ratio of 8.9 percent, while the
data counterpart (federal government expenditure) for the relevant period is approximately
6.9 percent. Further, we closely approximate the actual income tax schedule—see Figure 1.
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Figure 1: Income tax schedule
Notes: The data was generously supplied by Heathcote et al. (2017) who used PSID and the TAXSIM
program to compute it. The axis units are income relative to the corresponding mean.

4.4 Labor productivity process

The stochastic process for household labor productivity levels, 𝑒, is calibrated to match
statistical properties of the labor income process as well as the cross-sectional distributions of
hours worked, wealth, and earnings. The productivity levels have a persistent component 𝑒𝑃
with Markov matrix Γ𝑃 , and a transitory component 𝑒𝑇 with probability vector 𝑃𝑇 .26 There
are 4 persistent and 6 transitory productivity levels. We normalize the average productivity
to one, so we are left with 26 free parameters associated with the labor income process.

There are two approaches commonly used in the literature. The first is to reduce the
number of parameters using a discretization procedure, such as Tauchen (1986) or Rouwen-
horst (1995), and target a small set of moments usually only focusing on the labor-income
25We define transfers in the data as personal current transfer receipts, which include social security transfers,

medicare, medicaid, unemployment benefits, and veteran benefits. We choose this for two reasons: First,
we include retired and unemployed households in our inequality moments. Second, lump-sum transfers in
the model can be interpreted as a basic income in the case of not working. For more details, see Appendix
A.1.

26In the notation of the model, Γ = Γ𝑃 ⊗ diag(𝑃𝑇 ), and 𝑒 = 𝑒𝑃 + 𝑒𝑇 𝑒𝜂
𝑃 . For instance, if 𝜂 = 0, the

transitory shocks are additive, whereas, if 𝜂 = 1, they are multiplicative.
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process itself. The second approach, put forward by Castañeda et al. (2003), abstracts from
labor income process targets and, instead, targets enough distributional moments to identify
the large set of parameters. We largely follow this second approach but, importantly, we
also target moments of the labor income process itself, including higher moments such as
skewness and kurtosis of their growth rates. This gives us the ability to match, at the same
time, important measures of inequality and risk faced by households. The transition ma-
trix governing the persistent shocks, the probabilities associated with transitory shocks, and
the corresponding productivity levels are reported in Table 1 under the “Labor productivity
process” label.

Inequality. We target the share owned by every quintile, the Gini coefficient, and the share
owned by the bottom and top 5 percent of the wealth, earnings, and hours distributions. For
wealth and earnings we use data from the SCF, and for hours we use the Current Population
Survey (CPS). We report the performance of the model with respect to these targets in
Table 2 under the label “Cross-sectional distributions.” To account for the joint distribution
of earnings and wealth we also target the cross-sectional correlation between them.

Risk. Pruitt and Turner (2020) document statistical properties of the labor income process
for households using administrative data from the IRS. We exploit their findings and compute
the variance, Kelly skewness, and Moors kurtosis of the growth rates of labor income, which
we target. We report them in Table 2 under the “Statistical properties of labor income”
label. These moments, however, do not include self-employed households. To deal with this,
we identify one element of the vector 𝑒𝑃 with self-employed status. We think of this state
as representing, in a reduced form, entrepreneurial opportunities of households in our model.
Entrepreneurs, on average, earn higher incomes and account for a disproportional fraction of
wealth in the SCF data which we include as targets. On the other hand, for consistency, we
exclude households in this state from the computation of the labor-income moments.27 The
targeted moments for entrepreneurs, together with their model counterparts are reported in
Table 2 under the label “Self-employed statistics.”

4.5 Model performance

Table 3 presents income sources over quintiles of income. The composition of income, espe-
cially of consumption-poor households, plays an important role in determining the optimal
27A similar strategy has been employed by Kindermann and Krueger (2021) and Nakajima and Ríos-Rull

(2019).
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Table 2: Benchmark Model Economy: Target Statistics and Model Counterparts

(1) Macroeconomic aggregates

Target Model

Intertemporal elasticity of substitution 0.65 0.65
Average hours worked 0.32 0.33
Capital to output 2.50 2.49
Capital income share 0.38 0.38
Investment to output 0.26 0.26
Transfer to output (%) 11.4 11.4
Debt to output (%) 61.5 61.5
Fraction of employed (%) 79.0 80.4
Fraction of hhs with negative net worth (%) 9.7 7.9
Correlation between earnings and wealth 0.43 0.43
(2) Cross-sectional distributions

Bottom (%) Quintiles Top (%) Gini
0–5 1st 2nd 3rd 4th 5th 95–100

Wealth
US data −0.2 −0.2 1.0 4.2 11.2 83.8 60.0 0.82
Model −0.1 0.1 1.8 3.7 8.9 84.3 56.3 0.81

Earnings
US data −0.2 −0.2 4.1 11.6 20.9 63.6 35.6 0.64
Model 0.0 0.0 5.5 10.5 19.7 62.3 34.8 0.62

Hours
US data 0.0 3.0 13.7 20.7 25.4 37.2 12.9 0.34
Model 0.0 0.0 12.9 22.4 25.7 35.0 9.8 0.36
(3) Statistical properties of labor income

Target Model

Variance of 1-year growth rate 2.3 2.2
Kelly skewness of 1-year growth rate −0.1 −0.1
Moors kurtosis of 1-year growth rate 2.7 2.3
(4) Self-employed statistics

Target Model

Share in population (%) 12.5 12.7
Share of wealth (%) 45.8 38.9
Share of earnings (%) 28.7 30.5
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fiscal policy. The fraction of uncertain labor income determines the strength of the insurance
motive while the fraction of unequal asset income affects the redistributive motive. Our cal-
ibration delivers, without targeting, a good approximation of the composition of household
income. Figure 2 presents how well the model matches the targeted cross-sectional distribu-
tions of wealth, earnings, and hours. The last two panels of the figure show that the model
also approximates well the untargeted distributions of income and consumption. The earn-
ings elasticity of the most productive households plays a role in some of the arguments we
present below. So, we followed the procedure in Kindermann and Krueger (2021) to calcu-
late this elasticity for the top 1 percent. The elasticity in the model implies that the peak
of the Laffer curve lies at 78 percent, which is reasonably close to their targeted value of 73
percent—see Appendix K for more details.
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Figure 2: Fit to Inequality Data

5 Main Results
The optimal paths for the fiscal policy instruments are presented in Figure 3. The capital
income tax is front-loaded, hitting the upper bound for 16 years, and decreasing to 26 percent
in the long run. The labor income tax drops on impact to 9 percent and then monotonically
increases to 39 percent in the long run. Lump-sum transfers jump to 40 percent of output
on impact, follow a U-shaped pattern in the short-run and, starting from period 22, fall
monotonically toward 15 percent of output in the long run. The government debt-to-output
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Table 3: Income Sources of Households by Quintile of Wealth

Quintile Model US data

Labor Asset Transfer Labor Asset Transfer

1st 80.2 0.2 19.8 83.6 0.4 16.1
2nd 77.0 2.6 20.4 86.5 1.1 12.3
3rd 74.4 5.3 20.3 85.6 1.9 12.5
4th 74.8 9.4 15.7 84.1 3.8 12.2
5th 63.1 31.2 5.7 70.4 21.4 8.2

All 70.4 16.7 12.9 77.3 12.3 10.4

Notes: This table summarizes the pre-tax total income decomposition. The
data comes Table 6 in Díaz-Giménez et al. (2011) who summarize the 2007
Survey of Consumer Finances. We define total income using all categories but
“Other”. We split “Business” income into labor and asset income using the
proportion of overall “Labor” to “Capital” income.

ratio rises in the initial periods. Then, since the capital income is kept at the upper bound
but transfers fall, the government accumulates assets. Finally, the reduction of capital income
tax combined with the increase in transfers leads to an increase in government debt toward
154 percent of output in the long run. This policy yields welfare gains equivalent to a 3.5
percent permanent increase in the consumption of all households.

In what follows, we briefly describe aggregate and distributional statistics that summarize
the effects of the Ramsey policy. Then, to understand the economic forces behind the results
and to inspect the role played by each fiscal instrument, we introduce a decomposition of the
welfare effects, and conduct policy perturbations around the optimum.

5.1 Aggregates

Figure 4 summarizes the main effects of the optimal policy on aggregates.28 High capital
income taxes in the initial periods lead to a reduction in the capital stock of about 10
percent. The substantial fall in these taxes later on does not imply a recovery for three
reasons: (1) government debt increases, which crowds out private capital, (2) labor decreases
over time as a result of higher labor income taxes, which reduces the marginal product of
capital, and (3) the optimal policy implies a reduction in risk faced by households, which
reduces precautionary savings.
28Appendix O.1 contains a more comprehensive list of figures.
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Figure 3: Optimal Fiscal Policy: Benchmark
Notes: Thin dashed lines: initial stationary equilibrium; Thick solid curves: optimal transition.

Aggregate consumption increases on impact, then decreases towards a level also about 10
percent lower than the pre-policy-change value. The low after-tax interest rates account for
the downward slope in the initial periods, and the long-run decrease is consistent with the
decrease in output associated with the overall lower long-run levels of capital and labor.

Even with lower labor income taxes in the initial periods, aggregate hours fall on impact.
This is due to the redistribution achieved by the increase in initial capital income taxes and
lump-sum transfers. The associated wealth effects on labor supply reduce the labor supply
of the more numerous lower-productivity households. The subsequent reduction in hours
worked are due to increasing labor income taxes. In the long run, aggregate hours fall by 15
percent relative to the initial equilibrium.

Most of the welfare gains associated with this policy come from redistribution and insur-
ance. However, the average household is also better off under this reform—see Section 5.3.
This is partially due to the higher levels of leisure associated with the reduction in hours
worked. More importantly, though, it is due to the more efficient allocation of labor sup-
ply. The redistribution achieved by the policy makes low-productivity households relatively
wealthier, and the associated wealth effects reduce their labor supply.29 The opposite occurs
with high-productivity households. These changes result in a significant increase in average
29Marcet, Obiols-Homs, and Weil (2007) show that wealth effects on labor supply also play an important role

in determining whether there is over- or under-accumulation of capital in the SIM model.
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labor productivity—measured by the ratio of effective labor to hours worked—which can
be seen in Figure 4f. In Section 6, we show that, as a result of this mechanism, even a
planner that does not value reductions in inequality would be in favor of some amount of
redistribution.
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Figure 4: Optimal Fiscal Policy: Aggregates
Notes: Thin dashed lines: initial stationary equilibrium; Thick solid curves: optimal transition.

5.2 Distributional effects

The optimal policy implies a reduction in the amount of inequality and risk faced by house-
holds. This is achieved, to a large extent, simply by the increase in the share of households’
income that comes from equal and certain lump-sum transfers, which we illustrate in Figure
5a. This translates into less overall risk and inequality. To show this in a compact way it is
useful to define a consumption–leisure composite, 𝑐𝛾(1−ℎ)1−𝛾, which is the term that enters
the households’ period utility function. In Figures 5b and 5c, we show that the optimal policy
implies a reduction in risk (measured by the variance of the growth rate of the composite)
that households face, and a reduction in the amount of inequality (measured by the Gini
coefficient of the composite).

The reduction in inequality of the composite, however, masks a different effect of the policy
on consumption and hours. Figures 5d and 5e show that the policy implies a significant
reduction in consumption inequality, but an increase in hours inequality. This increase in
hours inequality is associated with the more efficient allocation of labor supply highlighted
above.
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Figure 5: Optimal Fiscal Policy: Distributional Effects
Notes: Panels (b)–(e): Thin dashed lines: initial stationary equilibrium; Thick solid curves: optimal transi-
tion.

5.3 Sources of welfare improvement

In this section, we present a decomposition of average welfare gains that is helpful for under-
standing the properties of the optimal fiscal policy. This decomposition is similar to the ones
introduced by Benabou (2002) and Floden (2001), but here we allow not only for welfare
comparisons between steady states, but also for transitional effects of policy.30

Average welfare gains. Consider a policy reform and denote by {𝑐𝑗
𝑡 , ℎ𝑗

𝑡}∞
𝑡=0 the equilib-

rium consumption and labor paths of a household with and without the reform, with 𝑗 = 𝑅
or 𝑗 = NR respectively. The average welfare gain, Δ, that results from implementing the
reform is defined as the constant (over time and across households) percentage increase to
𝑐NR

𝑡 that equalizes the utilitarian welfare to the value associated with the reform; that is,

∫ 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 ((1 + Δ)𝑐NR
𝑡 , ℎNR

𝑡 )]𝑑𝜆0 = ∫ 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑅
𝑡 , ℎ𝑅

𝑡 )]𝑑𝜆0, (5.1)

where 𝜆0 is the initial distribution over states (𝑎0, 𝑒0). These welfare gains associated with
the utilitarian welfare function can be decomposed into three effects which we introduce one
30In Appendix E.3, we consider an alternative decomposition that aims at setting appart the effects of policy

on consumption and labor-supply decisions. We also present there decomposition results conditional of
income and wealth quantiles.
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at a time.

1. Level effect. First, the average welfare gain can come from increases in the utility of the
average household. Reductions in distortive taxes or a more efficient allocation of resources
achieve this goal. This is the only relevant effect in a representative agent economy without
any source of heterogeneity. Let the aggregate level of 𝑐𝑡 and ℎ𝑡 at each 𝑡 be

𝐶𝑗
𝑡 ≡ ∫ 𝑐𝑗

𝑡𝑑𝜆𝑗
𝑡, and 𝐻𝑗

𝑡 ≡ ∫ ℎ𝑗
𝑡𝑑𝜆𝑗

𝑡,

where 𝜆𝑗
𝑡 is the distribution over (𝑎0, 𝑒𝑡) conditional on whether or not the reform is imple-

mented with 𝑒𝑡 denoting the history of productivity realizations from period 0 to 𝑡. The level
effect, Δ𝐿, is then given by

∞
∑
𝑡=0

𝛽𝑡𝑢 ((1 + Δ𝐿)𝐶NR
𝑡 , 𝐻NR

𝑡 ) =
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝐶𝑅
𝑡 , 𝐻𝑅

𝑡 ) . (5.2)

2. Insurance effect. Since households are risk averse, average welfare increases if, con-
ditional on a household’s initial asset and productivity state, the riskiness of its future con-
sumption and labor paths is reduced. A tax reform that transfers from the ex-post lucky to
the ex-post unlucky reduces the risk faced by households. To define this component precisely,
first let { ̄𝑐𝑗

𝑡(𝑎0, 𝑒0), ℎ̄𝑗
𝑡(𝑎0, 𝑒0)}∞

𝑡=0 denote a certainty-equivalent sequence of consumption and
labor conditional on a household’s initial state that satisfies

∞
∑
𝑡=0

𝛽𝑡𝑢 ( ̄𝑐𝑗
𝑡(𝑎0, 𝑒0), ℎ̄𝑗

𝑡(𝑎0, 𝑒0)) = 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑗
𝑡 , ℎ𝑗

𝑡)] . (5.3)

Next, let ̄𝐶𝑗
𝑡 and 𝐻̄𝑗

𝑡 denote the associated aggregate certainty equivalents, that is

̄𝐶𝑗
𝑡 = ∫ ̄𝑐𝑗

𝑡(𝑎0, 𝑒0)𝑑𝜆0, and 𝐻̄𝑗
𝑡 = ∫ ℎ̄𝑗

𝑡(𝑎0, 𝑒0)𝑑𝜆0, for 𝑗 = 𝑅, NR. (5.4)

The insurance effect, Δ𝐼 , is defined by

1 + Δ𝐼 ≡ 1 − 𝑝𝑅
𝑟𝑖𝑠𝑘

1 − 𝑝NR
𝑟𝑖𝑠𝑘

, where
∞

∑
𝑡=0

𝛽𝑡𝑢 ((1 − 𝑝𝑗
𝑟𝑖𝑠𝑘)𝐶𝑗

𝑡 , 𝐻𝑗
𝑡 ) =

∞
∑
𝑡=0

𝛽𝑡𝑢 ( ̄𝐶𝑗
𝑡 , 𝐻̄𝑗

𝑡 ) . (5.5)

Here, 𝑝𝑗
𝑟𝑖𝑠𝑘 is the welfare cost of risk in the economies with and without reform.
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3. Redistribution effect. Utilitarian welfare also increases if the inequality across house-
holds with different initial states is reduced. A tax reform reduces inequality if it redis-
tributes from rich (ex-ante lucky) to poor (ex-ante unlucky) households, that is by reducing
the behind-the-veil-of-ignorance risk. Formally, the redistribution effect, Δ𝑅, can be defined
as

1+Δ𝑅 ≡ 1 − 𝑝𝑅
𝑖𝑛𝑒𝑞

1 − 𝑝NR
𝑖𝑛𝑒𝑞

, where
∞

∑
𝑡=0

𝛽𝑡𝑢 ((1 − 𝑝𝑗
𝑖𝑛𝑒𝑞) ̄𝐶𝑗

𝑡 , 𝐻̄𝑗
𝑡 ) = ∫

∞
∑
𝑡=0

𝛽𝑡𝑢 ( ̄𝑐𝑗
𝑡(𝑎0, 𝑒0), ℎ̄𝑗

𝑡(𝑎0, 𝑒0))𝑑𝜆0.

(5.6)
Analogously to 𝑝𝑗

𝑟𝑖𝑠𝑘, 𝑝𝑗
𝑖𝑛𝑒𝑞 denotes the cost of inequality. Redistribution, according to this

definition, is also a type of insurance but with respect to the ex-ante risk a household faces
concerning which initial condition (𝑎0, 𝑒0) they receive.

Welfare decomposition. The following proposition establishes that it is possible to de-
compose the average welfare gains into the components described above.

Proposition 3 For balanced-growth-path preferences,31 the components defined above satisfy
the following relationship,

1 + Δ = (1 + Δ𝐿)(1 + Δ𝐼)(1 + Δ𝑅).

Note that none of the elements of the decomposition are defined residually, hence this is
indeed a decomposition and not a definition.

Choice of certainty equivalents. There can be many certainty-equivalent paths that
satisfy equation (5.3). These paths could differ over time and over levels of consumption and
labor. In general, these choices can affect the components of the decomposition, but they are
immaterial if household certainty equivalents follow parallel paths over time.

Assumption 1 The certainty equivalents display parallel patterns if ̄𝑐𝑗
𝑡(𝑎0, 𝑒0) = 𝜂𝑗(𝑎0, 𝑒0) ̃𝐶𝑗

𝑡 ,
and 1 − ℎ̄𝑗

𝑡(𝑎0, 𝑒0) = 𝜂𝑗(𝑎0, 𝑒0)(1 − 𝐻̃𝑗
𝑡 ), for some function 𝜂𝑗(𝑎0, 𝑒0) and paths { ̃𝐶𝑗

𝑡 }∞
𝑡=0, and

{𝐻̃𝑗
𝑡 }∞

𝑡=0.

Under this assumption, which we discuss in detail in Appendix E, we can establish the
following proposition.
31The proof in Appendix E establishes the result for a more general set of utility functions.
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Proposition 4 For balanced-growth-path preferences, as specified in equation (2.1), if the
certainty equivalents satisfy Assumption 1, then the components Δ𝐿, Δ𝐼, and Δ𝑅 are inde-
pendent of the paths { ̃𝐶𝑗

𝑡 }∞
𝑡=0, and {𝐻̃𝑗

𝑡 }∞
𝑡=0.

All welfare-decomposition results we present were calculated using certainty-equivalent paths
that satisfy Assumption 1.

Table 4: Welfare Decomposition for the Benchmark and the Fixed-Instrument Experi-
ments

Δ Δ𝐿 Δ𝐼 Δ𝑅

Benchmark 3.5 0.2 1.2 2.1

Instrument Other instru-
ments

Fixed𝑎 capital income tax Benchmark𝑏 0.8 −0.6 1.3 0.1
Reoptimized𝑐 1.1 −0.7 1.3 0.5

Fixed labor income tax Benchmark 2.0 0.6 −0.3 1.7
Reoptimized 2.7 0.6 0.3 1.8

Constant lump-sum𝑑 Benchmark 3.3 −0.1 1.3 2.1
Reoptimized 3.4 0.1 1.3 2.0

Fixed lump-sum Reoptimized 2.1 1.0 0.0 1.0

Fixed debt-to-output Benchmark 3.2 −0.1 1.3 2.0
Reoptimized 3.3 0.0 1.3 1.9

Notes: (a) “Fixed” means fixed at the initial stationary equilibrium value. (b) By “Benchmark” we mean
keeping the other instruments at their benchmark optimal paths except for adjusting the level of lump-
sum transfers to balance the intertemporal budget constraint of the government, so the economy is still in
equilibrium. (c) In the “Reoptimized” experiments, we recompute the optimal path for the other instruments
policy with the added restriction that one of the instruments is fixed. (d) In the “Constant lump-sum”
experiments, we allow lump-sum transfers to move in period 0 but then restrict their path to be constant
over time at that level.

Results. The first row of Table 4 shows the welfare decomposition for our benchmark
results. The optimal policy generates average welfare gains, Δ, of 3.5 percent. Almost two
thirds of these gains, 2.1 percent, can be attributed to the redistribution effect, Δ𝑅. The
insurance effect, Δ𝐼 , implies an additional 1.2 percent, and the level effect, Δ𝐿, captures the
remaining 0.2 percent of gains. The experiments in the next two subsections are designed to
shed light on how each fiscal instrument contributes to these gains.
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5.4 Fixed instruments

To help clarify the role played by each instrument in the optimal policy, Table 4 also presents
results for fixed-instrument experiments in which we hold each instrument fixed at their
level in the initial stationary equilibrium. We present two versions of these experiments that
are complementary. In the first version, for each fixed instrument, we simply set all other
instruments to their benchmark optimal paths. We want the economy to still be in equilibrium
though, so we adjust the level of lump-sum transfers to balance the intertemporal budget
constraint of the government. In the second version, we reoptimize all other instruments
while adding the fixed instrument restriction as a constraint for the planner.32 For lump-sum
transfers, we reoptimize under the constraint that they are constant over time while being
able to move in period 0, and under the constraint that lump-sum cannot move at all and is
simply fixed in its initial steady state level.

Capital income taxes. Changes to capital income taxes are the key source of the redis-
tributive gains implied by the optimal policy. This is made clear by the fact that, regardless
of whether or not we reoptimize the other instruments, fixing capital income taxes at their
initial steady-state level leads to a substantial reduction in these gains. Perhaps more sur-
prising, is the also substantial drop in the level effect. This is mostly due to the loss of
average labor productivity improvements that result from redistribution. We return to this
point in Section 6.

Labor income taxes. The second most welfare-relevant instrument is the labor income
tax. Fixing it at its pre-reform level reduces average welfare by roughly 1.5 percent without
reoptimization and 0.8 percent if the other instruments are reoptimized. Most of the welfare
losses are associated with the insurance channel. The increase in the level component of wel-
fare, highlights the relevant trade-off as more insurance comes at the cost of more distortions
to labor supply decisions. Notice that the results so far are exactly in line with what we
found in the two period example from Section 2: capital income taxes play a key role in the
provision of redistribution, while changes in the labor income taxes are most important for
the provision of insurance.

Lump-sum transfers. We conduct two types of experiments with lump-sum transfers.
In the first, which we refer to by “Constant lump-sum” experiments, we allow lump-sum
32Appendices O.11 and O.12 contain the figures for the reoptimized instruments and their associated aggre-

gates.
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transfers to move in period 0 but then it must remain at that level in all future periods. This
experiment shows that the optimal time variation of lump-sum transfers has small welfare
implications relative to the optimal once-and-for-all increase.33 When other instruments are
reoptimized, the corresponding welfare losses are of about 0.1 percent. This indicates that
the reasons behind the optimal time-varying lump-sum path are subtle. We return to this
issue in the next subsection. In the “Fixed lump-sum” experiment we set lump-sum transfers
to be equal to their pre-reform levels in every period and reoptimize the other instruments.
The average welfare gains are, in this case, reduced by 1.4 percent. When lump-sum transfers
are not allowed to move, the planner provides redistribution by reducing labor income taxes.
Since the labor income of lower productivity households is relatively low the amount of
redistribution obtained is reduced by about half. The lower labor income taxes also imply
that insurance gains disappear, while the level effect is improved. It follows that the overall
increase in lump-sum transfers in the optimal benchmark policy plays a crucial role in the
amount of redistribution and insurance implied by that policy.

Debt-to-output. Fixing the government debt-to-output ratio at the initial level reduces
average welfare gains by 0.3 percent without reoptimization and by 0.2 percent when other
instruments are reoptimized. In a similar way to what happens in the “Constant lump-sum”
experiment, the majority of these relatively small losses come from the level effect. This is
indicative of the fact that variations in government debt, as well as the timing of lump-sum
transfers, allow the planner to mitigate the distortions associated with capital and labor
income taxes. In the next subsection we argue that this mitigation is achieved mostly by the
effect of these instruments on the proportion of households that are borrowing constrained.

5.5 Perturbations around the optimal taxes

In this section, we vary the taxes around the optimal paths and calculate the welfare decom-
position at each step in order to better understand the main economic mechanisms driving
the optimal paths. For each experiment, the entire path of lump-sum taxes is shifted up or
down in order to balance the government’s intertemporal budget constraint.

Number of years of capital income taxes in the upper bound. The optimal path of
capital income taxes features 16 years of taxes at the upper bound of 100 percent. Figure
33Since time-variation of lump-sum transfers is not particularly important, one way to implement the overall

increase in transfers in our model would be with the introduction of a constant universal basic income. To
get a sense of magnitude, the increase of transfers is equivalent to 6 percent of GDP or 327 dollars a month
(using 2019 GDP per capita in current prices). There is an increasing literature evaluating the benefits of
UBI, see Guner, Kaygusuz, and Ventura (2021), Luduvice (2019) and Daruich and Fernández (2020).
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Figure 6: Varying the Number of Years Capital Income Taxes are Kept at the Upper Bound
Notes: (a) Thin dashed line: initial stationary equilibrium; Thick solid curve: optimal transition; Thin shaded
solid curves: perturbations in the number of years capital income tax hits the upper bound from −5 to +5
relative to benchmark (b) the 𝑥-axis represents the change in the number of periods capital income taxes are
kept at the upper bound relative to the optimum, 𝑦-axis shows change in the welfare gains in percent points.

6 shows what happens to the components of welfare if capital income taxes are kept at the
upper bound for more or fewer periods. The effect on insurance is of second order and, in line
with the result in Proposition 2, the relevant trade-off is between extra redistribution and
negative distortionary effects. These two effects, however, largely offset each other, leading to
a relatively flat average welfare function, which can be appreciated by noticing that changing
the number of years of capital income confiscation up or down by 5 years leads to average
welfare changes of less than 0.2 percent.
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Figure 7: Varying Long-Run Capital Income Taxes
Notes: (a) Thin dashed line: initial stationary equilibrium; Thick solid curve: optimal transition; Thin shaded
solid curves: perturbations in the rate of capital income taxes starting from period 16 onward, from −10 to
+10 percent relative to benchmark; (b) The 𝑥-axis represents the change in long-run capital income taxes
relative to the optimum, 𝑦-axis shows change in the welfare gains in percent points.

Long-run capital income taxes. Varying the level of long-run capital income taxes yields
the results in Figure 7. The changes considered here affect the path of capital income taxes
starting in period 16, and therefore still have a sizable effect of ex-ante risk captured by the
redistribution effect. The main difference relative to Figure 6 is that the insurance effect is
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of comparable magnitude to redistribution. As highlighted by Chamley (2001) and Acikgoz
et al. (2018), far enough in the future every household’s dependence on their initial condition
fully dissipates, so that changes in income taxes have no effect on redistribution, but only
on level and insurance. Indeed, in Section 6 we show that the insurance effect by itself can
rationalize levels of capital income taxes very similar to the long-run levels seen here. Finally,
notice again how flat the average welfare function is in response to relatively sizable changes
in the path of capital income taxes.
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Figure 8: Varying Labor Income Taxes
Notes: (a) Thin dashed line: initial stationary equilibrium; Thick solid curve: optimal transition; Thin
shaded solid curves: perturbations in the rate of labor income taxes, from −10 to +10 percent relative to
benchmark; (b) The 𝑥-axis represents the change in labor income taxes relative to the optimum, 𝑦-axis shows
change in the welfare gains in percent points.

Labor income taxes. Here we change the average level of labor income taxes up and down
by 10 percentage points, leading to the results in Figure 8. First notice that the effect of
changes in labor income taxes are an order of magnitude higher than the previous ones.
Besides this quantitative difference, the main qualitative difference is that the insurance
effect is larger than the redistribution effect. Hence, though labor income taxes do have
important effects on ex-ante risk, the mechanism highlighted in Proposition 1 plays a more
important role here. That is, a higher labor income tax which is rebated via lump-sum
transfers (exactly the experiment here) effectively reduces the labor income risk to which
households are exposed.

The path of lump-sum transfers. Figure 9 shows what happens to welfare when the path
of lump-sum transfers is gradually replaced by a constant. This change leads a reduction in
average welfare gains of about 0.2 percent.34 For households close enough to their borrowing
constraints, the initial sharp front-loading of lump-sum transfers mitigates the distortions
associated with high capital income taxes. Hence, moving to a flatter lump-sum path reduces
34Notice that it does not follow from this that changes to the timing of lump-sum transfers cannot have

important welfare implications. In Appendix H.3, we show that backloading lump-sum transfers increases
the share of borrowing-constrained households which can significantly reduce welfare.
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Figure 9: Varying Lump-Sum Transfers
Notes: (a) Thin dashed line: initial stationary equilibrium; Thick solid curve: optimal transition; Thin shaded
solid curves: perturbations towards constant lump-sum transfers; (b) The 𝑥-axis represents the homotopy
parameter between the initial optimal path at 𝑥 = 0 and a flat path at 𝑥 = 1, 𝑦-axis shows change in the
welfare gains in percent points.

the gains that occur via the level effect. It is also relevant to notice that, absent borrowing
constraints, households would be indifferent to the timing of lump-sum transfers.35 Since
households do face borrowing constraints, however, they would, ceteris paribus, always prefer
lump-sum transfers to be front-loaded as much as possible. The reason this is not optimal,
and why lump-sum transfers actually increase in the medium run, is because front-loading
lump-sum transfers to this extent would lead to a substantial increase in government debt.
The corresponding crowding out of capital would compound with the reduction that already
occurs due to high initial capital income taxes and the reduction in precautionary savings
that results from the extra insurance.36

5.6 Long-run optimality conditions

Aiyagari (1995) analyzes optimal long-run capital income taxes in an environment similar to
ours. He argues that the Ramsey planner’s decision to move aggregate resources across time
is risk-free and the associated Euler equation, in the long run, implies the modified golden
rule.37 Lining this up with households’ precautionary motivation for savings rationalizes
35Without borrowing constraints, the households’ lifetime budget constraint would not be affected by a

revenue-neutral change in the timing of lump-sum transfers (holding other taxes fixed). So, for this type
of variation, the Ricardian equivalence would hold. If instead we were considering a change in the timing
of capital or labor income taxes, this would affect the risk faced by households, which would then violate
Ricardian equivalence as in Barsky et al. (1986). Bhandari et al. (2017) formalize a similar argument.

36We illustrate these effects in Appendix H, which provides more details about the perturbation towards
constant transfers and an additional perturbation towards a monotonically decreasing path for lump-sum
transfers.

37The proof in Aiyagari (1995) that the modified golden rule is a long-run optimality condition depends cru-
cially on government spending being endogenous in his model, entering separately into the utility function
of households. Acikgoz et al. (2018) show that the result generalizes to environments without endogenous
government spending.
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positive long-run capital income taxes. Figure 10a shows that the modified golden rule is
satisfied in our benchmark results. We view this as corroborating evidence for the accuracy of
our numerical long-run results. This accuracy is fundamentally important for pinning down
the long-run optimal policies. As we demonstrate in Figure 10b, and discuss extensively in
Appendix M, small (plus or minus 0.1 percent) deviations from the modified golden rule lead
to large variations in the long-run debt-to-output ratio (from 1.32 to 2.00).
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(b) 𝛽(1 + 𝑟) vs. Debt-to-Output

Figure 10: Modified golden rule (MGR) and debt sensitivity.
Notes: (a) Thin dashed line: constant equal to one; Thick solid curve: 𝛽(1 + 𝑟) over time in the benchmark
experiment; Thick dashed curve: optimal transition with constant policy (see Section 7.1). (b) The 𝑥-axis
displays different levels of long-run debt-to-output; Horizontal thin dashed lines: 0.999, 1.000, 1.001; Thick
solid curve: 𝛽(1 + 𝑟).

Acikgoz et al. (2018) have made advances in obtaining a better characterization of the long-
run optimal tax system in the same environment as ours, except that they use a separable
utility function. They argue that the long-run optimal tax system is independent of initial
conditions and of the transition towards it, and show that the modified golden rule and
three additional optimality conditions must hold. In Appendix M, we extend their results to
the balanced-growth-path preferences used in this paper and show that our long-run results
do satisfy those three additional conditions. We also compute the optimal paths using our
method but with their calibration, and find long-run results that are consistent with their
findings. Quantitative differences between our results and theirs must, therefore, be due to
differences in the calibration and not the solution method. In Appendix M, we also compare
the two calibrations and discuss in detail the likely roots of these differences.38 We also
provide there an extensive discussion of the advantages and disadvantages of both numerical
methods.
38The most stark differences are that they find substantially higher optimal labor income taxes and debt-to-

output ratios than we do. The higher levels of labor income taxes result, to a large extent, from stronger
wealth effects on labor supply under their calibration. Appendix M presents a detailed comparison between
the two calibrations and how, in particular, our strategy leads to a significantly better fit to the distributions
of earnings, wealth, and hours worked which also indirectly discipline wealth effects.
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6 Maximizing Efficiency: The Role of Redistribution
The utilitarian welfare function, which we consider in our benchmark results, places equal
Pareto weights on every household. This implies a particular social preference with respect
to the equality-versus-efficiency trade-off. Here, we consider a different welfare function that
rationalizes different preferences about this trade-off,

𝑊 𝜎̂ = ⎛⎜⎜
⎝

∫ 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡, ℎ𝑡)]
1−𝜎̂
1−𝜎

𝑑𝜆0
⎞⎟⎟
⎠

1−𝜎
1−𝜎̂

,

where 𝜆0 is the initial distribution over individual states (𝑎0, 𝑒0). Following Benabou (2002),
we refer to 𝜎̂ as the planner’s degree of inequality aversion. If 𝜎̂ = 𝜎, maximizing 𝑊 𝜎

is equivalent to maximizing the utilitarian welfare function. If 𝜎̂ → ∞, this becomes the
Rawlsian welfare function. Finally, if 𝜎̂ = 0, maximizing 𝑊 0 is equivalent to maximizing
efficiency, where by efficiency we mean the combination of the level and insurance effects.
We formalize claim in the following proposition.

Proposition 5 If the certainty equivalents satisfy Assumption 1, maximizing 𝑊 0 is equiva-
lent to maximizing efficiency, that is, maximizing (1 + Δ𝐿) (1 + Δ𝐼).

In Appendix G.1, we consider different levels of inequality aversion, but here we present
results only for the extreme case in which the planner cares only about efficiency, namely
𝜎̂ = 0.39 Figure 11 presents the results in comparison with the benchmark results. Relative
to the initial stationary equilibrium, the policy implies average welfare gains of 1.8 percent:
0.8 percent from reduction in distortions, and 1.0 percent from extra insurance. Even though
the planner does not take this into consideration, the policy also implies a redistributive gain
of about 1.1 percent.40

Relative to the benchmark experiment, capital and labor income taxes are lower throughout
the transition. Higher income taxes are beneficial both for insurance and redistributive
motives, so it makes sense that removing one of these motives from consideration leads to
lower levels of optimal income taxes.

Redistribution leads to efficiency gains. It is not at all obvious why it is optimal, with
the purpose of maximizing efficiency, to confiscate capital income for the first eight years.
39The experiment of considering a planner that ignores redistributive concerns is similar to the experiment

in Chari et al. (2018) restricting policies from reducing the value of initial wealth in utility terms, which
effectively removes the planner’s possibility to provide redistribution.

40Appendix O.2 contains the figures for aggregates associated with this experiment.
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Figure 11: Optimal Fiscal Policy: Maximizing Efficiency
Notes: Thin dashed lines: initial stationary equilibrium; Thick solid curves: path that maximizes efficiency
optimal transition; Thick dashed curves: path that maximizes the utilitarian welfare function (benchmark
results).

In a representative-agent setup without lump-sum taxes, the reason for front-loading capital
income taxes is that the earlier the taxes are imposed, the less saving decisions are distorted.
Here, the planner could reduce lump-sum transfers in every period, which would be distortive
only to the extent that it brings households closer to their borrowing constraints. In Figure
12, we entertain exactly this experiment: we reduce the level of initial capital income taxes
and decrease lump-sum transfers in every period by the same amount to balance the budget.

First, notice from Figure 12b that this hardly affects the insurance effect, although it
does lead to a significant reduction in the level effect. This can be puzzling at first since it
follows from a reduction in distortive taxes. Moreover, this variation actually reduces the
proportion of households with negative assets (since capital income taxes subsidize negative
asset holdings), so it is hard to argue the welfare losses are coming from forcing households
toward their borrowing constraints. The key to make sense of these results is the increase in
labor productivity, which follows from the redistribution achieved by the high initial capital
income taxes. As explained above, redistribution generates wealth effects on labor supply
that lead to a more efficient allocation of hours in the economy, with higher productivity
households working relatively more—see Figure 12d. This effect is strong enough that it
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Figure 12: Reducing Initial Capital Income Taxes
Notes: (a,c,d) Thin dashed lines: initial stationary equilibrium; Thick solid curves: path that maximizes
efficiency; Thin shaded solid curves: variations associated with the reduction in the initial capital income
taxes; (b) the 𝑥-axis represents the homotopy parameter between the initial optimal path at 𝑥 = 0 and a
constant capital income tax path at 𝑥 = 1, 𝑦-axis shows change in the welfare gains in percentage points.

outweighs the distortions associated with the high initial capital taxes.41

Capital levy. An alternative way to investigate how much of the optimal policy has to do
with redistribution is to consider an economy without initial inequality. In Appendix I, we
present results for an experiment in which we remove the upper bound on capital income
taxes. We show that, as a result, the planner completely expropriates the initial asset position
of all households, removing all wealth inequality.42 What is surprising, however, is that this
actually leads to higher capital income taxes in future periods as well. This happens for three
reasons: (1) in the short run, savings decisions are inelastic as households try to rebuild their
buffer stocks of assets; (2) the large amount of assets acquired by the government crowds in
capital, further mitigating distortions to capital accumulation; and (3) capital income taxes
are still beneficial to provide redistribution (mostly in the short run) and insurance (mostly in
the long run). Importantly, even though capital income taxes are overall higher relative to the
benchmark, the equilibrium capital stock is still higher throughout the transition. Finally,
the optimal path of lump-sum transfers is monotonically decreasing in this case. This is
41This effect is not present in an earlier version of this paper, Dyrda and Pedroni (2016), because there we

assume a utility function without wealth effects on labor supply.
42The expropriation of assets is combined with substantial lump-sum transfers in period 0, so that different

savings in period 0 already bring the wealth Gini back to 0.25 by period 1.
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indicative of the fact that the non-monotonicities found in the benchmark experiment are
associated with capital income taxes staying at the upper bound for several periods before
converging to a constant in the long run.

7 Importance of Time-Varying Policies
In this section, we illustrate the importance of allowing policy instruments to vary over time.
As a first step to solve the Ramsey problem, we solved for the optimal once-and-for-all policy
in which the planner must keep policy instruments constant after an initial change. We,
then, proceeded by adding flexibility to our approximation in the time domain until we reach
the benchmark approximation. We summarize some stages of this process in Table 5, and in
Figures 13 and 14.

Table 5: Effects of Time-Varying Policy

𝜏𝑘 𝜏ℎ 𝑇 /𝑌 𝐵/𝑌 𝐾/𝑌 Δ Δ𝐿 Δ𝐼 Δ𝑅

Initial equilibrium 41.5 22.5 11.4 61.5 2.49 − − − −

Constant policy 67.5 27.9 19.7 53.9 2.02 1.6 −0.7 0.8 1.6
Front-loading 54.7 29.4 18.9 −1.0 2.36 2.8 −0.3 0.8 2.3
More flexibility (8 par.) 34.4 40.2 21.2 29.2 2.49 3.4 0.1 1.3 2.1
Benchmark (17 par.) 26.7 39.1 15.2 154.3 2.48 3.5 0.2 1.2 2.1

Notes: All values, except for 𝐾/𝑌 , are in percentage points. For 𝜏𝑘, 𝜏ℎ, 𝑇 /𝑌 , 𝐵/𝑌 , and 𝐾/𝑌
in rows 2 to 5 we report values in the final stationary equilibrium. The average welfare, Δ, and its
components, Δ𝐿, Δ𝐼, and Δ𝑅, are computed accounting for transition.

7.1 Constant policy

As can be seen in Figure 13,43 the optimal once-and-for-all policy is essentially a weighted
average of the time-varying instruments from our benchmark results. More weight is put on
the short-run levels since those periods are more relevant for welfare. The long-run levels
of the fiscal instruments differ substantially. Therefore, if one is interested in the long-run
properties of the fiscal instruments, it is important to allow them to vary over time. In
particular, as we noticed above in Section 5.6, whereas the modified golden rule holds for
the benchmark policy, it does not hold under the constant-policy restriction—see Figure
10a. Moreover, constant policy leads to welfare gains that are less than half those of the
43Figures with the corresponding aggregates are presented in Appendix O.3.
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Figure 13: Optimal Fiscal Policy: Constant Policy
Notes: Thin dashed lines: initial stationary equilibrium; Thick solid curves: path that maximizes efficiency
optimal transition; Thick dashed curves: benchmark results.

optimal dynamic policy, as can be seen by comparing the second and last rows of Table 5.
This difference in welfare is driven mostly by the level effect, which imply losses of −0.7 for
constant policy and gains of 0.2 for the benchmark policy. This is indicative of the fact that
time variation of fiscal instruments is important for the cross-mitigation of distortions. For
instance, the initial paths of labor income taxes and lump-sum transfers help mitigate the
distortions associated with high capital income taxes in the initial periods, something that
is ruled out in the constant-policy experiment.

7.2 Front-loading capital income taxes

In Figure 14, we focus on the path for capital income taxes, but at each stage all fiscal
instruments are reoptimized. Panel 14a shows what happens when we allow capital income
taxes to be front-loaded: this minimal amount of flexibility already increases welfare gains
from 1.6 percent to 2.8, as reported in Table 5. Front-loading implies a substantial increase
in the redistribution component of welfare, from 1.6 to 2.3 percent. It also improves the level
effect by 0.4 percent, due to the more efficient allocation of labor implied by the additional
redistribution.
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Figure 14: Adding Flexibility to Paths: Capital Income Taxes
Notes: Thin dashed lines: initial stationary equilibrium; Thick dashed curve in (a): optimal constant taxes;
Thick solid curve in (a) and thick dashed curve in (b): optimal transition allowing front-loading of capital
income taxes; Thick solid curve in (b) and thick dashed curve in (c): optimal transition with 8 param-
eters (𝛼𝑘

0 , 𝛽𝑘
0 , 𝜆𝑘, 𝛼ℎ

0 , 𝛽ℎ
0 , 𝜆ℎ, 𝛽𝑇

0 , 𝜆𝑇 ); Thick solid curve in (c): benchmark optimal transition with 17
parameters—using 𝑚𝜏𝑘𝐹 = 𝑚𝜏ℎ𝐹 = 0, 𝑚𝜏𝑘0 = 𝑚𝜏ℎ0 = 𝑚𝜏ℎ𝐹 = 𝑚𝑇𝐹 = 2, and 𝑚𝑇0 = 4 in equation
(3.2).

7.3 More flexibility (8 parameters)

In Panel 14b, we show what happens to capital income taxes when all fiscal instruments are
allowed to follow the simplest form of equation (3.2), with polynomials of degree zero. This
involves choosing 8 parameters and the corresponding optimal policy improves welfare gains
to 3.4 percent. Finally, Panel 14c shows what happens when we move from the 8-parameter
solution to our benchmark 17-parameter solution, which brings welfare gains to 3.5 percent.
The benchmark solution trades off a reduction in the insurance gains (from 1.26 to 1.19) for
a more than offsetting increase in the level effect (from 0.05 to 0.23), while maintaining the
redistributive gains—see the last three columns of Table 5. These results underscore that
fine-tuning the time-variation of fiscal instruments can have important implications for what
is achieved with the optimal policy.

In Appendix G.3, we document all the additional intermediate steps of our implementation
of this procedure with the corresponding figures and welfare gains. At each step in which we
add more flexibility, welfare increases by less, but some of the fiscal instruments still change
in meaningful. These changes compound to the differences in long-run instruments that can
be observed between the fourth and last rows of Table 5. So, to determine optimal long-run
policy accurately we make sure to keep adding flexibility until both welfare and policy are
no longer affected.

8 Complete Market Economies
To understand how market incompleteness and different sources of inequality affect the op-
timal policy, we provide a build-up to our benchmark result. We start from a representative
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agent economy, without any heterogeneity whatsoever. Then, we introduce, labor-income
and wealth inequality, in turn. Introducing uninsurable idiosyncratic productivity risk and
borrowing constraints brings us back to the SIM model. At each step, we analyze the optimal
fiscal policy identifying the effect of each feature.

Importantly, for the complete market economies we can characterize the optimal policy
analytically. We can also compute the optimal policy using this characterization and with
the parameterized paths we used to obtain our benchmark results. The comparison between
the two gives an idea of how well our numerical method approximates the actual optimal path.
Notice that, in this complete-markets environment (without ad hoc borrowing constraints)
the Ricardian equivalence holds, so the optimal paths for lump-sum taxes and debt are
indeterminate, which is why we do not discuss or plot them.

The complete market economy is simply the SIM economy with the Markov transition ma-
trix, Γ, set to the identity matrix and borrowing constraints replaced by no-Ponzi conditions.
In order to keep the amount of labor-income inequality comparable with the benchmark cal-
ibration we rescale the productivity levels so as to keep the variance of the present value of
labor income the same. Since the wealth distribution is indeterminate in the steady state of
this economy, as argued by Chatterjee (1994), we can set the initial distribution to be the
same as in our benchmark economy. We recalibrate the discount factor, 𝛽, to keep the same
capital-to-output ratio.

Consider the same Ramsey problem as in Definition 3. With complete markets we can
show that:

Proposition 6 There exist a finite integer 𝑡∗ and a constant Θ such that the optimal tax
system is given by 𝜏𝑘

𝑡 = 1 for 0 ≤ 𝑡 < 𝑡∗; while for 𝑡 ≥ 𝑡∗ 𝜏𝑘
𝑡 follows

1 + (1 − 𝜏𝑘
𝑡+1)𝑟𝑡+1

1 + 𝑟𝑡+1
= 1 − 𝑁𝑡

1 − 𝑁𝑡+1

1 − 𝜏ℎ
𝑡+1

1 − 𝜏ℎ
𝑡

𝜏ℎ
𝑡 + 𝜏𝑐

𝜏ℎ
𝑡+1 + 𝜏𝑐 ; (8.1)

for 0 ≤ 𝑡 ≤ 𝑡∗, 𝜏ℎ
𝑡 evolves according to

1 + (1 − 𝜏𝑘
𝑡+1)𝑟𝑡+1

1 + 𝑟𝑡+1
= Θ + 𝜎 (1 − 𝑁𝑡+1)−1

Θ + 𝜎 (1 − 𝑁𝑡)
−1

1 − 𝜏ℎ
𝑡+1

1 − 𝜏ℎ
𝑡

1 + 𝜏𝑐 + 𝛼 (𝜎 − 1) (𝜏𝑐 + 𝜏ℎ
𝑡 )

1 + 𝜏𝑐 + 𝛼 (𝜎 − 1) (𝜏𝑐 + 𝜏ℎ
𝑡+1); (8.2)

and for all 𝑡 > 𝑡∗, 𝜏ℎ
𝑡 is determined by

𝜏ℎ
𝑡 (𝑁𝑡) = (1 + 𝜏𝑐)

(1 − 𝑁𝑡) Θ + 𝛼 + 𝜎 (1 − 𝛼) − 𝜏𝑐. (8.3)
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Figure 15: Optimal Taxes: Complete Market Economies
Notes: Thin dashed lines: initial taxes; Thick solid curves: optimal taxes for representative economy; Thick
dotted curves: optimal taxes with only labor-income inequality; Thick dashed curve: optimal taxes with
labor-income and wealth inequality.

In Appendix F, we apply the method introduced by Werning (2007) to prove this proposi-
tion,44 and analogous ones for versions of this economy without labor–income and/or wealth
inequality.45 In particular, we also show that the magnitudes of 𝑡∗ and Θ are related to the
levels of wealth and labor–income inequality, respectively. Figure 15 illustrates the numerical
results obtained using this proposition.

Representative agent. To avoid a trivial solution, Ramsey problems in a representative-
agent economy usually do not allow lump-sum taxation. We do, so the solution in this case
is indeed very simple. It is optimal to obtain all revenue via lump-sum taxes and set capital
and labor income taxes so as not to distort any of the agent’s decisions. This amounts to
setting 𝜏𝑘

𝑡 = 0 and 𝜏ℎ
𝑡 = −𝜏𝑐 for all 𝑡 ≥ 0. Since consumption taxes are exogenously set

to a constant level, zero capital income taxes leave savings decisions undistorted and labor
income taxes set equal to the negative of the consumption tax ensures labor supply decisions
are not distorted either.

Labor-income inequality. When labor income is unequal, there is a redistributive reason
to tax it. In Figure 15, we see that, in this case, it is optimal to have labor income taxes be
virtually constant over time and capital income taxes virtually equal to zero in every period.
44Werning (2007) allows complete expropriation of initial capital holdings. For comparability with our bench-

mark results, we impose an upper bound on capital income taxes and introduce an exogenous consumption
tax.

45In the economy without wealth inequality, lump-sum transfers and capital income taxes in period 0 are
non-distortive and have no effect on redistribution, so their optimal levels are indeterminate.
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Figure 16: Optimal Taxes: Complete Market Economies
Notes: Thin dashed lines: initial taxes; Thick solid curves: optimal taxes from Benchmark SIM model; Thick
solid shaded curves: optimal taxes calculated using the same parameterized paths used in the Benchmark
experiment; Thick dashed curves: optimal taxes calculated using Proposition 6.

Wealth inequality. When there is wealth inequality there is a redistributive reason to tax
asset income. With complete markets, however, capital income taxes are fully front-loaded,
hitting the upper bound for 𝑡∗ periods before converging to zero.46 While capital income
taxes are at the upper bound, labor income taxes are increasing. This leads to a decreasing
(or less increasing) path for labor supply, which mitigates distortions to the households’
intertemporal decisions: it leads to a smoother path for period utility as leisure increases
while consumption decreases.

Uninsurable risk. Figure 16 contains the numerical results obtained using the same so-
lution method used for the benchmark results together with the ones obtained using the
proposition. This shows that, at least for this economy, the parameterized paths are able to
approximated the actual solution relatively well (average welfare gains are similar as well:
2.253 percent using the proposition versus 2.246 percent using the parameterized paths).
The figure also shows, for comparison, the results from the benchmark SIM model. The only
important qualitative difference is the fact that for the SIM model capital income taxes are
positive in the long run.

9 Sensitivity Analysis and Robustness
In Appendix G, we present the following robustness experiments: First, we show that higher
degrees of inequality aversion for the planner are associated with higher taxes overall. How-
46Straub and Werning (2020) show that optimal long-run capital income taxes can be positive in environments

similar to this one. The reason why their logic does not apply here is the fact that the planner has lump-sum
taxes as an available instrument which removes the need to obtain revenue via distortive instruments. In
Appendix F.8, we include a more detailed discussion of this issue.
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ever, particularly for values of inequality aversion above the benchmark utilitarian level,
further increases have surprisingly small effects. Second, we show that changes in the IES
have large effects specially on the path of optimal capital income taxes, because a different
IES leads to a different relative risk aversion for households and a different degree of planner
inequality aversion. The combined effect of all these changes can be large and they show up
mostly on the number of periods capital income taxes remain in the upper bound: which is
reduced to 10 years for an IES of 0.8, and increased to 71 years for an IES of 0.5. Finally, we
show that increases in the Frisch elasticity unsurprisingly reduce labor income taxes though
by relatively small amounts.

In Appendices M and N, we present results for four alternative calibrations: (1) an economy
that disciplines the labor income process without using any distributional moment, a common
calibration strategy in the literature; (2) the calibration from Aiyagari and McGrattan (1998);
(3) a calibration that introduces return-risk; and (4) the calibration from Acikgoz et al.
(2018). There are two main takeaways from these experiments: (1) the qualitative features
of the Ramsey policy in the SIM model that we highlight in the paper—high short-run capital
income taxes combined with increasing labor income taxes—are robust to substantial changes
to the calibration; (2) the quantitative results are sensitive to the calibration, which justifies
the extensive effort we put into all details of it.

10 Concluding Comments
In this paper, we quantitatively characterize the solution to the Ramsey problem in the
standard incomplete markets model. We find that it is optimal to use distortive income
taxes since they provide redistribution and insurance when rebated via lump-sum transfers—
a utilitarian planner would expand the US social welfare system significantly, increasing
overall transfers by roughly 50 percent. We quantify the associated welfare effects with
a decomposition that accommodates transitional effects. We show that high initial capital
income taxes are an effective way to provide redistribution, which also leads to a considerably
more efficient allocation of labor via wealth effects on labor supply. Increasing labor income
taxes over time and a non-monotonic path for lump-sum transfers mitigate the intertemporal
distortions associated with high capital income taxes. Government debt has relatively small
welfare consequences, in part because, for the majority of the optimal transition, only a
minority of households are borrowing constrained, but also because the associated general
equilibrium price effects have counteracting effects on redistribution and insurance.

Finally, this paper abstracts from several important aspects that could be relevant for
fiscal policy. For instance, in the model studied above, a household’s productivity is entirely
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a matter of luck. It would be interesting to understand the effects of allowing for human
capital accumulation. We also assume the government has the ability to fully commit to
future policies. Relaxing this assumption could lead to interesting insights. The model also
abstracts from the effects of international financial markets; capital income taxes as high as
the ones we find optimal in this paper are unlikely to survive if households are able to move
their assets overseas. We also abstract from life-cycle issues, and maintain a relatively simple
tax structure. Our method, however, could be used to approximate the solution to Ramsey
problems in more elaborate models, the main constraint being computational power.
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